Towards a correspondance

ocal symmetries

Comments and further work

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Yang-Mills origin of gravitational symmetries Phys. Rev. Lett. 113, 231606

A. Anastasiou

M.J. Duff, L. Borsten, M. Hughes and S. Nagy

Theoretical Physics Group Imperial College London

EMFCSC, 2015

Comments and further work

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduce Gravity as the square of Yang-Mills String Theory origin

Towards a correspondance

Multiplets, Global symmetries, Amplitudes and Solutions

Local symmetries

Squaring Linear Supergravity and Linear Yang-Mills The dictionary

Comments and further work

Local symmetries

Comments and further work

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

D = 10 Type II from SYM

The massless open-string states consist of a vector and a spinor: (A_{μ}, χ) . Using the *SO*(8) tensor products:

$8_v \otimes 8_v = 35_v \oplus 28 \oplus 1$,	$8_v\otimes8_s=56_c\oplus8_c$
$8_{s}\otimes8_{s}=35_{s}\oplus28\oplus1$,	$8_v \otimes 8_c = 56_s \oplus 8_s$
$\mathbf{8_c}\otimes\mathbf{8_c}=\mathbf{35_c}\oplus28\oplus1$,	$\mathbf{8_s}\otimes\mathbf{8_c}=\mathbf{56_v}\oplus\mathbf{8_v}$

Local symmetries

Comments and further work

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

D = 10 Type II from SYM

The massless open-string states consist of a vector and a spinor: (A_{μ}, χ) . Using the *SO*(8) tensor products:

$$\begin{array}{ll} 8_v\otimes 8_v=35_v\oplus 28\oplus 1 & , & 8_v\otimes 8_s=56_c\oplus 8_c \\ 8_s\otimes 8_s=35_s\oplus 28\oplus 1 & , & 8_v\otimes 8_c=56_s\oplus 8_s \\ 8_c\otimes 8_c=35_c\oplus 28\oplus 1 & , & 8_s\otimes 8_c=56_v\oplus 8_v \end{array}$$

 $(A_{\mu}, \chi^{+}) \otimes (A_{\nu}, \chi^{-}) = (g_{\mu\nu} \oplus B_{\mu\nu} \oplus \phi) + (\psi_{\mu}^{-} \oplus \chi^{+} \oplus \psi_{\mu}^{+} \oplus \chi^{-})$ $+ (C_{\mu\nu\rho} \oplus A_{\mu})$

Local symmetries

Comments and further work

D = 10 Type II from SYM

The massless open-string states consist of a vector and a spinor: (A_{μ}, χ) . Using the *SO*(8) tensor products:

$$\begin{array}{ll} 8_v\otimes 8_v=35_v\oplus 28\oplus 1 & , & 8_v\otimes 8_s=56_c\oplus 8_c \\ 8_s\otimes 8_s=35_s\oplus 28\oplus 1 & , & 8_v\otimes 8_c=56_s\oplus 8_s \\ 8_c\otimes 8_c=35_c\oplus 28\oplus 1 & , & 8_s\otimes 8_c=56_v\oplus 8_v \end{array}$$

$$(A_{\mu}, \chi^{+}) \otimes (A_{\nu}, \chi^{-}) = (g_{\mu\nu} \oplus B_{\mu\nu} \oplus \phi) + (\psi_{\mu}^{-} \oplus \chi^{+} \oplus \psi_{\mu}^{+} \oplus \chi^{-}) + (C_{\mu\nu\rho} \oplus A_{\mu}) (A_{\mu}, \chi^{+}) \otimes (A_{\nu}, \chi^{+}) = (g_{\mu\nu} \oplus B_{\mu\nu} \oplus \phi) + (\psi_{\mu}^{+} \oplus \chi^{-} \oplus \psi_{\mu}^{+} \oplus \chi^{-}) + (D_{\mu\nu\rho\sigma}^{+} \oplus C_{\mu\nu} \oplus \phi)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Progress

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Progress

There has been progress towards understanting the Yang-Mills origin of all sorts of aspects of gravity theories:

• **Multiplets**: The squaring rule generalises to all dimensions yielding a supergravity theory with $\mathcal{N} = \mathcal{N}_L + \mathcal{N}_R$ possibly coupled to matter multiplets. (1502.05359)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Progress

- **Multiplets**: The squaring rule generalises to all dimensions yielding a supergravity theory with $\mathcal{N} = \mathcal{N}_L + \mathcal{N}_R$ possibly coupled to matter multiplets. (1502.05359)
- **Global symmetries**: Construct the *U*-duality group of the supergravity theory from the corresponding SYM parts. (1502.05359)

(ロ) (同) (三) (三) (三) (○) (○)

Progress

- **Multiplets**: The squaring rule generalises to all dimensions yielding a supergravity theory with $\mathcal{N} = \mathcal{N}_L + \mathcal{N}_R$ possibly coupled to matter multiplets. (1502.05359)
- **Global symmetries**: Construct the *U*-duality group of the supergravity theory from the corresponding SYM parts. (1502.05359)
- **Amplitudes**: Calculating gravity scattering amplitudes using the double-copy formalism. (Bern, Carrasco, Johansson 0805.3993)

Progress

- **Multiplets**: The squaring rule generalises to all dimensions yielding a supergravity theory with $\mathcal{N} = \mathcal{N}_L + \mathcal{N}_R$ possibly coupled to matter multiplets. (1502.05359)
- **Global symmetries**: Construct the *U*-duality group of the supergravity theory from the corresponding SYM parts. (1502.05359)
- **Amplitudes**: Calculating gravity scattering amplitudes using the double-copy formalism. (Bern, Carrasco, Johansson 0805.3993)
- **Solutions**: Schwarzschild is the double copy of the point Coulomb solution. (Monteiro, O'Connell, White 1410.0239)

Towards a correspondance

Local symmetries

00

Comments and further work

 $(\mathcal{N}_L = 1) \otimes (\mathcal{N}_R = 0)$ gives new-minimal $\mathcal{N} = 1$

Off-shell multiplets

$$V^{i} = (A^{i}_{\mu}, \chi^{i}, D^{i})$$

$$4 + 4$$

$$A^{i'}_{\nu} 3 + 0$$

$$\varphi_{\nu} = (Z_{\mu\nu}, \psi_{\nu}, V_{\nu})$$

$$12 + 12$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Local symmetries

Gravity transformations

By writing the metric as:

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$

the diffeos:

$$x'^{\mu} = x^{\mu} + \kappa \xi^{\mu}$$

give the "gauge" transformation:

$$\delta g_{\mu\nu} = \delta h_{\mu\nu} = \kappa \nabla_{\mu} \xi_{\nu} + \kappa \nabla_{\nu} \xi_{\mu} = \kappa (\partial_{\mu} \xi_{\nu} + \partial_{\nu} \xi_{\mu}) + \mathcal{O}(\kappa^2)$$

and thus to linear order:

$$\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Comments and further work

Yang-Mills transformations

By writing the gauge parameter as:

$$\theta^i(x) = \theta^i + g\sigma^i(x)$$

the Yang-Mills transformation becomes:

$$\delta A^{i}_{\mu} = \partial_{\mu} \vartheta^{i} - g f^{i}_{\ jk} \vartheta^{j} A^{k}_{\mu} = g(\partial_{\mu} \sigma^{i} - f^{i}_{\ jk} \theta^{j} A^{k}_{\mu}) + \mathcal{O}(g^{2})$$

and thus to linear order:

$$\delta A^i_\mu = \partial_\mu \sigma^i - f^i_{\ jk} \theta^j A^k_\mu$$

・ロト・西ト・西ト・西ト・日・ つんぐ

Local symmetries ŏo ●000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The goal

The goal is to reproduce the gravity gauge transformations:

$$\begin{split} \delta Z_{\mu\nu} &= \partial_{\mu} \alpha_{\nu} + \partial_{\nu} \beta_{\nu} \text{ where } Z_{\mu\nu} \equiv h_{\mu\nu} + B_{\mu\nu} \\ \delta \psi_{\nu} &= \partial_{\nu} \eta \\ \delta V_{\nu} &= \partial_{\nu} \Lambda \end{split} \tag{1}$$

from the Yang-Mills gauge transformations:

$$\begin{split} \delta A^{i}_{\mu} &= \partial_{\mu} \sigma^{i} - f^{i}_{jk} \theta^{j} A^{k}_{\mu} \\ \delta \chi^{i} &= -f^{i}_{jk} \theta^{j} \chi^{k} \\ \delta D^{i} &= -f^{i}_{jk} \theta^{j} D^{k} \\ \delta A^{i'}_{\nu} &= \partial_{\nu} \sigma^{i'} - f^{i'}_{j'k'} \theta^{j'} A^{k'}_{\nu} \end{split}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The field dictionary

The field dictionary is:

$$Z_{\mu\nu} \equiv A^{i}_{\mu} \star \Phi_{ii'} \star A^{i'}_{\nu}$$

$$\psi_{\nu} \equiv \chi^{i} \star \Phi_{ii'} \star A^{i'}_{\nu}$$

$$V_{\nu} \equiv D^{i} \star \Phi_{ii'} \star A^{i'}_{\nu}$$
(3)

where the spectator field transforms in the bi-adoint.

The field dictionary

The field dictionary is:

$$Z_{\mu\nu} \equiv A^{i}_{\mu} \star \Phi_{ii'} \star A^{i'}_{\nu}$$

$$\psi_{\nu} \equiv \chi^{i} \star \Phi_{ii'} \star A^{i'}_{\nu}$$

$$V_{\nu} \equiv D^{i} \star \Phi_{ii'} \star A^{i'}_{\nu}$$
(3)

where the spectator field transforms in the bi-adoint. The convolution is crucial in the derivation as it does not obey the Leibniz rule:

$$(a \star b)(x) = \int a(y)b(x - y)d^{4}y$$

$$\partial_{\mu}(a \star b) = \partial_{\mu}a \star b = a \star \partial_{\mu}b$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The transformations

By varying the Yang-Mills parts, the gravity transformations become:

$$\delta Z_{\mu\nu} = \partial_{\mu} (\sigma^{i} \star \Phi_{ii'} \star A_{\nu}^{i'}) + \partial_{\nu} (A_{\mu}^{i} \star \Phi_{ii'} \star \sigma^{i'})$$

$$\delta \psi_{\nu} = \partial_{\nu} (\chi^{i} \star \Phi_{ii'} \star \sigma^{i'})$$

$$\delta V_{\nu} = \partial_{\nu} (D^{i} \star \Phi_{ii'} \star \sigma^{i'})$$
(5)

Comments and further work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The parameter dictionary

Thus the parameter dictionary is:

(

$$\begin{aligned} \alpha_{\nu} &\equiv \sigma^{i} \star \Phi_{ii'} \star A_{\nu}^{i'} \\ \beta_{\mu} &\equiv A_{\mu}^{i} \star \Phi_{ii'} \star \sigma^{i'} \\ \eta &\equiv \chi^{i} \star \Phi_{ii'} \star \sigma^{i'} \\ \Lambda &\equiv D^{i} \star \Phi_{ii'} \star \sigma^{i'} \end{aligned}$$
(6)

Towards a correspondanc

Local symmetries

Comments and further work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comments

What else works:

- Poincare transformations work trivially.
- Supersymmetry transformations follow in a nice way.

Towards a correspondanc

Local symmetries

Comments and further work

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Comments

What else works:

- Poincare transformations work trivially.
- Supersymmetry transformations follow in a nice way.

Two major improvements:

- Extend to $\mathcal{N}_R = 1$
- Extend to higher orders were non-linear effects start to appear.

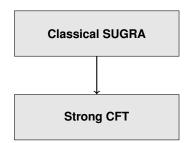
Towards a correspondance

Local symmetries

Comments and further work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Future work



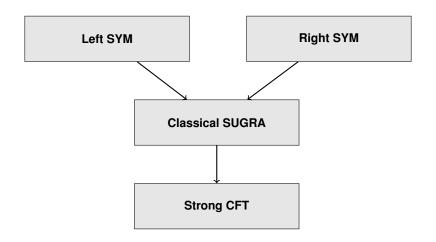
Towards a correspondance

Local symmetries

Comments and further work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Future work

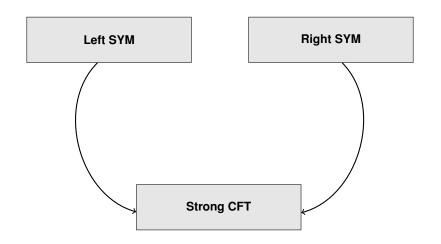


Towards a correspondance

Local symmetries

Comments and further work

Future work



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduce	Gravity	as	the	square	of	Yang-Mills
0						

Local symmetries

Comments and further work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

THANK YOU